Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
Home Print this page Email this page Small font size Default font size Increase font size Users Online: 112
Year : 2011  |  Volume : 34  |  Issue : 3  |  Page : 185-189

Thermoluminescence and photoluminescence study of CaSO4 : Dy nanophosphor for 6 MeV energy electron dosimetry

1 Department of Physics, University of Pune, Ganeshkhind, Pune, India
2 Department of Physics and Astrophysics, University of Delhi, Delhi, India
3 Department of Physics, University of Pune, Ganeshkhind; Abasaheb Garware Collge, Pune, India
4 RSSD, BARC, Trombay, Mumbai, India

Correspondence Address:
Sanjay D Dhole
Department of Physics, University of Pune, Ganeshkhind, Pune
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0972-0464.101716

Rights and Permissions

Nanoparticles of CaSO 4 : Dy with size around 25 nm, were synthesized by the chemical co-precipitation method for the purpose of high energy electron dosimetry. The nanocrytstalline samples were irradiated with 6 MeV energy electrons having fluence varied from 3 × 10 14 to 2 × 10 15 e/cm 2 .The pre and post irradiated samples were characterized by the XRD, SEM, PL and TL techniques. The XRD spectra show the orthorhombic phase and do not change with the electron fluence. Moreover, the particle size found to be around 25 nm and marginally increased from 25 nm to 34 nm with the increase in the electron fluence. SEM image confirms the existence of the nanoparticle around 30 to 40 nm. In PL emission spectra, a shift towards lower wavelength has been observed with decrease in particle size from micrometer to nanometer. This mainly attributes to the extension in the band gap of Dy 3+ ions. The TL spectra exhibit four peaks at around 437,545,638, and 748 K respectively. The TL response curve shows that the peak intensity initially increased with electron fluence, and at a fluence of 9 × 10 14 e/cm 2 saturates then decreased with increase in the electron fluence. It is mainly due to the generation of different kinds of trapping centers. The present study indicates that the CaSO 4 : Dy phosphor can be used for the measurement of dose of 6 MeV energy electrons over a range varying from 1 kGy to 25 kGy.

Print this article     Email this article
Next article
Previous article
Table of Contents
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Citation Manager
Access Statistics
Reader Comments
Email Alert *
Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded510    
    Comments [Add]    
    Cited by others 3    

Recommend this journal